AD 407 811

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

407811

-

THE Sarguard CORPORATION

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

15 JUNE 1963

(Title -- Unclassified)

OXIDATION CHARACTERISTICS OF VARIOUS STRUCTURAL MATERIALS
FOR RAMJETS AND HEAT EXCHANGERS

(Title -- Unclassified)
OXIDATION CHARACTERISTICS OF
VARIOUS STRUCTURAL MATERIALS
FOR RAMJETS AND HEAT EXCHANGERS

Contract

AF 33(657)-8706

Project

281

PREPARED BY

A C Debenetation

M. J. Albom

Manager, Materials and Process Section

CHECKED BY

J. W. Chambers

Project Engineer

UNCLASSIFIED

THE Marquardt

VAN NUYS, CALIFORNIA

CONTENTS

Section		P	age
I	SUMMARY	• ,	ı
II	INTRODUCTION		1
III	TEST PROCEDURE		2
IA	TEST RESULTS	•	2
V	DISCUSSION OF RESULTS		3
	A. Mechanical Properties		3
	B. Photomicrographs	•	4
VI	CONCLUSIONS		4
	DISTRIBUTION	. :	27

TABLES

T	able		P	age
	I	Summary of Tensile Control Specimens for Oxidation Tests		5
	II	Effect of Oxidation Exposure on Rene' 41 Alloy Sheet		6
	III	Effect of Oxidation Exposure on L-605 Alloy Sheet		7
	IV	Effect of Oxidation Exposure on Hastelloy C Alloy Sheet	•	8
,	V	Effect of Oxidation Exposure on Type 316L Stainless Steel Sheet	•	9
,	ΛΙ	Effect of Oxidation Exposure on Type 321 Stainless Steel Sheet	•	10
•	VII	Effect of Oxidation Exposure on 6061-T6 Aluminum Sheet	•	11
	VIII	Effect of Oxidation Exposure on AllO-AT Titanium Sheet		12

ILLUSTRATIONS

Figure		Page
1,	Effect of Oxidation Exposure and Aging on the Tensile Properties of Rene' 41 Alloy Sheet	13
2.	Effect of Oxidation Exposure and Aging on the Tensile Properties of L-605 Alloy Sheet	14
3.	Effect of Oxidation Exposure and Aging on the Tensile Properties of Hastelloy C Alloy Sheet	15
4.	Effect of Oxidation Exposure and Aging on the Tensile Properties of Type 316L Stainless Steel Sheet	16
5•	Effect of Oxidation Exposure and Aging on the Tensile Properties of Type 321 Stainless Steel Sheet	17
6.	Effect of Oxidation Exposure and Aging on the Tensile Properties of 6061-T6 Aluminum Sheet	18
7.	Effect of Oxidation Exposure and Aging on the Tensile Properties of Allo-AT Titanium Sheet	19
8.	Photomicrographs of Rene' 41 Alloy Sheet After Oxidation Exposure	20
9•	Photomicrographs of L-605 Alloy Sheet After Oxidation Exposure	21
10.	Photomicrographs of Hastelloy C Sheet After Oxidation Exposure	22
11.	Photomicrographs of Type 316L Stainless Steel Sheet After Oxidation Exposure	23
12.	Photomicrographs of Type 321 Stainless Steel Sheet After Oxidation Exposure	24
13.	Photomicrographs of 6061-T6 Aluminum Sheet After Oxidation Exposure	25
14.	Photomicrographs of Allo-AT Titanium Sheet After Oxidation Exposure	26

I. SUMMARY

Environmental tests were made to determine the oxidation characteristics of various sheet materials which exhibited a strong potential for use in ramjet engine and/or heat exchanger structures. The sheet materials tested were Rene' 41, L-605, Hastelloy C, Types 316L and 32l stainless steel, 6061-T6 aluminum, and Allo-AT titanium alloys.

These materials were evaluated over anticipated service temperature ranges for 5, 25, and 50-hour oxidation exposure periods. Exposure temperatures for the first five of these alloys were 1200°, 1500°, and 1800°F. For the last two alloys, the exposure temperatures were 350°, 500°, and 650°F; and 800°, 1000°, and 1200°F, respectively. Test specimen thicknesses ranged from 0.025 to 0.033 inch.

Test results indicate that Rene' 41 and L-605 alloys are serviceable at 1500°F for 50 hours without any effect or perceptible attack on the alloys. Hastelloy C is satisfactory for long time operation at 1800°F. Types 316L and 321 stainless steel may be used at 1500°F for varying time periods. The 6061-T6 aluminum alloy retains good mechanical properties at 350°F and excellent oxidation resistance to 650°F for 50 hours. Allo-AT titanium is satisfactory at 1200°F for time periods up to 50 hours. The characteristics of these alloys for the temperature and exposure conditions noted may decline noticeably as the thickness of the materials are reduced.

II. INTRODUCTION

During 1961, a program was conducted at Marquardt to evaluate alloys which were potentially most suitable for ramjet and heat exchanger structures. Mechanical property tests were performed to generate short time tensile, yield, elongation, creep, and stress rupture data. These tests were very successful from a preliminary selection standpoint and yielded much valuable information. Time did not permit extension of the testing program to include environmental exposure (oxidizing) reaction over extended time periods at temperature.

In consideration of the fact that severe oxidation in service can lead to catastrophic structural failure, a program was conducted during 1962 to determine the reaction of selected candidate alloys upon exposure in an oxidizing environment for time periods up to 50 hours at maximum predicted service temperatures.

The materials selected were Rene' 41, L-605, Hastelloy C, Types 316L and 32l stainless steel, 6061-T6 aluminum, and Allo-AT titanium alloys. Exposure temperatures ranged from 350° to 1800°F, depending on the alloy. Specimens were removed from the test environment at 5, 25, and 50 hour intervals to measure the percentage of oxide penetration. Mechanical property tests and

metallographic examinations were made to determine the base metal degradation and the resulting metallurgical structure. Comparisons were then made between exposed and unexposed control specimens. Test results and analyses are reported herein.

III. TEST PROCEDURES

Prior to initiation of oxidation exposure periods, short time tensile tests were conducted at room temperature for all of the alloys being tested in this program. The results of these tests (which are summarized in Table I) are representative of material strengths listed in published data.

Suitable quantities of each material and thickness were procured, and tensile specimens were prepared. Of the seven alloys tested, only two were heat treatable (Rene' 41 and 6061-T4). The Rene' 41 alloy was solution heat treated at 1950°F for 30 minutes in vacuum, then aged at 1400°F for 16 hours. The 6061-T4 alloy was aged to the -T6 condition in accordance with specification MIL-H-6088.

Photomicrographs (at 1000 X) were made of unexposed base metal specimens. Additional photomicrographs were made of specimens removed from the test environment after exposures for 5, 25, and 50 hours.

Tensile tests were performed on specimens removed from the test environment after the 5, 25, and 50 hour exposures. The levels of temperature exposure which were used correspond with the elevated temperature range potentially required of each alloy in service.

The specimens were exposed in a small laboratory furnace which was modified to allow a stream of filtered air to flow continuously into the exposure area.

Before exposure, all specimens were weighed to the nearest 0.01 gram and their thicknesses were measured to the nearest 0.0001 inch. After exposure periods, thickness measurements were made in identical locations on each specimen.

IV. TEST RESULTS

Test results showing the effect of oxidation exposure and aging on tensile properties are presented in Tables II through VIII. The ultimate tensile and yield strengths are shown graphically in Figures 1 through 7.

Also presented in Tables II through VIII are tabular data showing changes in weight and thickness for the various alloys due to oxidation exposure.

Photomicrographs showing the microstructure of the alloys after oxidation exposure are presented in Figures 8 through 14.

V. DISCUSSION OF RESULTS

A. Mechanical Properties

Table II presents data generated from environmental exposure and tesing of Rene' 41 specimens. The results are compared with control specimens. Changes in weight and thicknesses are noted for each temperature and exposure period. At the 1200° and 1500°F exposure temperatures there was no significant change in weight or thickness. At 1800°F, the maximum scaling noted was 1.4 mils after 50 hours. Reductions in tensile ultimate and yield strengths from control specimen values were 20 and 30%, respectively, at 1800°F. Elongation values exhibited at 1800°F showed improvement for exposed versus non-exposed specimens. The decrease of ultimate tensile and yield strength plus elongation value increase at 1800°F can be attributed to partial resolutioning of the Rene' 41 alloy material.

Table III presents data generated from exposure and testing of L-605 alloy. No significant changes in weight and thicknesses were noted for any of the exposure temperatures. Elongation at 1500° and 1800°F was noticeably higher for exposed specimens and was attributed to relieving of rolling stresses induced during manufacture of the thin material.

Table IV presents data from the Hastelloy C specimens. Tensile ultimate and yield strengths were higher and elongation was lower for the 1500°F exposed specimens. This can be attributed to age hardening of the alloy. Mechanical properties exhibited at 1800°F were comparable for both exposed and unexposed specimens. No significant changes in weight or thickness were noted.

Table V presents data from the Type 316L specimens. Tensile ultimate and yield strength values exhibited at 1800°F were comparable for the exposed and control specimens and some decrease in ductility was noted for the exposed specimens. Intergranular oxide penetration occurred at the 1800°F exposure temperature, resulting in the lower elongation values.

Table VI presents data from the Type 321 stainless specimens. Results are compared with those for the control specimens. Tensile ultimate and yield strength properties of exposed specimens at 1800°F compared favorably with the values for the control specimens. Elongation values at 1800°F showed a continuing decline as the exposure times were increased, indicating the embrittling effects of intergranular penetration of oxides.

Table VII presents data generated from environmentally exposing and testing the 6061-T6 aluminum specimens. The results are compared with those for the control specimens. The most significant mechanical properties are those exhibited at 350°F, since 6061 aluminum is precipitation aged at that temperature to achieve maximum (-T6) properties. The decline of mechanical properties at 350°F after 50 hours of exposure was minor. The properties exhibited at 500°F, after only 5 hours exposure indicated a 20 to 25% decline in ultimate tensile and yield strengths. This verifies the effect of rapid overaging of the 6061-T6 alloy.

Table VIII presents data generated from environmentally exposing and testing Allo-AT titanium alloy specimens. The results are compared with control specimens. The maximum exposure temperature of 1200°F is most significant because it exceeds the normally designated operational temperature of this alloy by 300°F. The values exhibited at 1200°F after 50 hour exposure were comparable with those for the unexposed specimens. This indicates that Allo-AT (5AL-2.5 Sn) titanium alloy can be safely used to a temperature of 1200°F for relatively long periods without decline of properties.

B. Photomicrographs

Figures 8 to 14 are photomicrographs of exposed and unexposed alloys at various temperatures and time periods. The specimens were not etched.

VI. CONCLUSIONS

Hastelloy C alloy was the only one of the seven alloys tested that did not exhibit significant changes in mechanical and physical properties under the conditions investigated. The other alloys exhibited either a reduction in strength or a significant change of microstructure.

The data presented in this report may be considered as design allowables, but only for the conditions of temperature, time, and material thickness described herein. It is anticipated that there would be a varying reaction of thinner materials and conceivable percentagewise decline of exhibited properties after long time temperature exposures in oxidizing atmospheres.

TABLE I

SUMMARY OF TENSILE CONTROL SPECIMENS FOR OXIDATION TESTS

Test Conditions:

Material

= As noted, liquid honed prior to testing

Test temperature = Room temperature

Strain rate = 0.005 in./in./min to rupture

Material	Thickness (inch)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi)	Ultimate Tensile Strength (Ksi)	Elongation in 2 inches (%)	Young's Modulus (10 ⁶ psi)
Hastelloy C	0.025	39.5	63.7	128.2	47	29.2
	0.025	30.7	62.5	128.6	45	28.2
	0.025	45.2	70.2	125.8	44	28.2
6061 - T6	0.032	26.8	37•9	43.3	10	10.8
	0.032	29.8	38•3	43.0	10	10.4
	0.032	27.5	37•0	42.7	9•5	10.2
Rene' 41 **	0.030	103.5	131.3	181.6	(10)*	29.4
	0.030	105.0	133.5	192.8	14	30.2
	0.030	98.9	130.2	190.3	14	29.0
316L Stainless	0.032	28.5	48.2	92.0	46	28.1
	0.032	20.7	40.9	92.4	46	27.7
	0.032	13.8	39.9	91.4	47	27.2
L-605	0.030	32.7	66.0	139.5	44	2 7. 5
	0.030	34.0	68.0	138.0	43	28 . 6
321 Stainless	0.030	16.8	35.7	87.5	45	27.0
	0.030	16.3	32.8	88.3	48	27.6
Alloat	0.030	99.7	115.1	125.8	13.5	16.6
	0.030	89.3	115.6	126.6	14	16.4

^{*} Broke outside gage length

^{**} Solution treated 1950°F, 30 minutes in vacuum, aged for 16 hours at 1400°F in air

,	Ma.	rquardt
VAN	NUYS,	CALIFORNIA

	UNCL	ASSIFIED		VAN NUYS, CALIFORNIA	REPORT PR 201-4U-			
			Young's Modulus (10 ⁶ psi)	29.4 20.2 20.2 17.4 16.3 16.3 25.9 25.9 1.0 21.0	16.3 16.9 15.4			
			Elongation in 2 inches (%)	10.04 14.0 14.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13	17.0 19.5 15.5 			
	IST	11 11 11	Ultimate Tensile Strength (Ksi)	181.6 192.6 190.3 55.5 50.1 174.1 137.5 140.2	7.1.0 11.0 14.0 14.0			
	1 ALLOY SHE	: Gage length Thickness Hold time	0.2% Yield Strength (Ksi)	131.5 133.5 130.2 40.0 42.6 127.0 127.0 125.3 	25.3			
	TABLE II OF OXIDATION EXPOSURE ON RENE! 41 ALLOY SHEET	<pre>= Laboratory furnace, 30 CFH shop air = 0.001 in./in./sec to yield 0.01 in./in./sec to rupture</pre>	Proportional Limit (Ks1)	103.5 105.0 98.9 31.0 29.0 91.0 178.0 178.0	24.5 17.0 20.2 			
	EXECUTED IN EXPO	Test Condition tory furnace, 30 CFH sin,/in,/sec to yield in,/in,/sec to rupture	Test Control of the c	Test C Test C ory furnace, n./in./sec to n./in./sec to	XIDATION EXPO Test C ory furnace, n./in./sec to	Tensile Test Temperature (°F)	1800 1800 1200 1200 1500 1500 1500	1800 1800 1800 1800 1800
	EFFECT OF O		Change in Thickness (inch)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+0.0008** +0.0011 +0.0012 +0.0014 +0.0009 +0.0010 ngth			
MC AGT		Oxidation Exposure Strain rates	Change in Weight (%)	000000000000000000000000000000000000000	hr +0.55 +0 hr +0.55 +0 hr +0.53 +0 hr +0.49 +0 hr +0.56 +0 hr +0.56 +0 hr +0.56 +0 hr eage length green loose scale			
		Oxidat Strair	Exposure	None (Control) None (Control) None (Control) None (Control) 1200°F 7 hr 1200°F 50 hr 1500°F 50 hr 1500°F 50 hr 1500°F 50 hr	g children in the state of the			
3	L	ACCIDIL IV	<u> </u>					

UNCLASSIHE D

- 6 -

LINIAL	ACC	IFIED
I IMI I	$\Delta \setminus \setminus$	I I I I I I I I I I I I I I I I I I I
UITUL		11 16 17

,	*/1 a	rquard!
VAN	NUYS,	CALIFORNIA

<u>UNCLAS</u>	うけたひ			VAR	NUYS,	CALI	-									V			
		Young's Modulus (10 ⁶ psi)	27.5 28.6	16.9	24.1 23.1	. :	:	: :	20.0	22.9	! !	!	16.8	16.9 16.5	::1	1			
	nches inch nutes	= 2.0 inches = 0.032 inch = 5 minutes	Elongation in 2 inches (\$)	54 44	15.0	45.0 46.5	0.04	!	: :	39.0 32.0	26.0	: :	i	25.0	33.0	2: 1	i		
턵	# # # !	Ultimate Tensile Strength (Ksi)	139.5 138.0	57.3	90.0	69.0	!	1 1	78.0 79.5	81.5	1 1	1	24.0	41.0 78 ×	::	1	:		
ALLOY SHEE	ir Gage length Thickness Hold time	0.2% Yield Strength (Ksi)	66.0 68.0	25.9	41.8 45.0	1	1	1 1	34.0	35.0	1 1	ļ	23.0	27.1 2): .8	0 • •	1	-		
TABLE III EFFECT OF OXIDATION EXPOSURE ON L-605 ALLOY SHEET Test Condtions:	0 0	Test Conditions: "ure = Laboratory furnace, 30 CFH shop air = 0.001 in./in./sec to yield 0.01 in./in./sec to rupture	Proportional Limit (Ksi)	32.7 34.0	19.9	32.4	1	1	: :	28.5	28.0	1 1	1	17.0	22.0	3.03	!	:	
TO OXIDATION EX			Tensile Test Temperature (°F)	R	1800	1200	1200	1200	00 ZZI	1500	1500	1500	1500	1,800	1800	1800	1800	1800	
EFFECT OF			EFFECT OF sure = Labors = 0.001	Change in Thickness (inch)	11	1		-0.0001	+0.0002	+0.0001	+0.0002	+0.000.0+	+0.0005 +0.0005	+0.0003	+0.0010	+0.0012 +0.0012	6000.04	+0.0008	+0.0009
	Oxidation Exposure Strain rates	Change in Weight (%)	1 1	;		-0.03	0 (00	+0.03	50.03	0.03	90.04	+0.13	+0.23 +0.33	5.5	+0.23	+0.26		
	Oxid Stra	Exposure	None (Control)	None (Control)	1200°F 5 hr 1200°F 25 hr	R R	2	1200°F >0 hr 1200°F 50 hr		2	1500°F 50 hr	K R	₹	1800°F 25 hr	8,19	R	1800°F 50 hr		

IINCLASSIFIED

7	Ma	rquardf
YAN	NUYS,	CALIFORNIA

UNCLASSI	FIED		VAN NUTS, CALIFORNIA	PR 281-4Q-
		Young's Modulus (10 ⁶ psi)	288.28 28.28 23.24 11.11 23.24 23.44 24.57 19.88	17.2 14.6 13.9
	= 2.0 inches = 0.025 inch = 5 minutes	Elongation in 2 inches (%)	25.5 25.0 25.0 25.0 25.0 25.0 25.0	26.0 25.5
Teal	Gage length : Thickness : Hold time :	Ultimate Tensile Strength (Ksi)	128.2 128.2 128.2 140.0 111.1 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0 140.0	36.9 37.3
r c allox s	shop air G	0.2% Yield Strength (Ksi)	63.7 70.2 70.2 70.2 11.8 11.8 14.2 71.3 71.3 71.3 71.3 71.3 71.3 71.3 71.3	26.5 23.6 25.2
TABLE IV SURE ON HASTELLO	Test Conditions: Test Conditions: posure = Laboratory furnace, 30 CFH = 0.001 in./in./sec to yield 0.01 in./in./sec to ruptum	Proportional Limit (Ksi)	26.5.7.2.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	17.6 17.5 16.4
TAN IDATION EXPOSU		Tensile Test Temperature (°F)	語	1800 1800 1800 1800 1800
e E		Change in Thickness (inch)	10.0001 10.0001 10.0001 10.0004 10.0002 10.0002 10.0002 10.0002 10.0002 10.0002 10.0002 10.0002 10.0002 10.0002	0.0005 0.0006 0.0006 0.0005 0.0005
	Oxidation Ex Strain rates	Change in Weight (\$)		6.08 6.28 6.17 6.12 6.21 6.21
MAC AGR		Exposure	None (Control) 1200°F 7 hr 1200°F 50 hr 1200°F 50 hr 1500°F 50 hr	\ \napprox \text{\text{R} \text{R} \tex

- 8 -

7	Ma	rquerdi
VAN	NUYS,	CALIFORNIA

	UNCL	AS:	SIFIED					VAI	N NU	Y8, (CALI	708	NIA		_												
				Young's	(10 ⁶ psi)	28.1	27.7	2	, o	19.0	19.4	19.8	!	1	- '	و•ريا د م	16.2	1	1	1	9.8	8.5	10.0	;	;	,	
			= 2.0 inches = 0.033 inch = 5 minutes	Elongation		94	91) +	42.0	29.0	29.0	27.0	:	1	,	0.1.c	28.0	1	;	!	24.0	21.5	20.0	:	:	:	
	SEL SHEET		Gage length Thickness Hold time	Ultimate Tensile	(Ks1)	92.0	4.26	91.4	20.0	0.49	63.7	62.5	;	• •	,	4T•1	10.7		i	1	18.9	18.3	19.5	;	;	:	
	TAINIESS ST		shop air e	0.2% Yield Strength	(Ks1)	78.5	40.9	٧٠٤٥	9.4	24.1	24.5	24.0	;	1 1		5.00 4.00	19.6	. ;	!	1	17.1	10.0	11.2	;	i	:	
	TABLE V ON TYPE 316L S	Conditions: nace, 30 CFH sec to yield sec to ruptur		Proportional		28.5	20.7	0.CT	ر. د ه.	17.0	18.0	15.0) 	: :	t		o:य	1 \$;	;	8.3	8.0	8.6	;	!		lost prior to weighing and measuring.
	CON EXPOSURE	Test (Laboratory furnace 0.001 in./in./sec 0.01 in./in./sec	Tensile Test	(a.)	돲	£1 8	14 °	7 1800 1800	1200	00ZI	051 1200	8 8	886	8 8	865	1500	1500	1500	1500	1800	1800	1800	8	0 00	TOM	to weighing s
	XT OF OXIDATE		posure =	Change in Thickness	(inch)		!	!	!!!	+0.0002	+0.0002	+0.0003	2005	+	2000	000	+0.0003	+0.0003	+0.0005	+0.0003	*6000.0+	+0.0015	100.04	+0.0012	40.0012 0.0010	TW:07	
	वस्यव		Oxidation Exposure Strain rates	Change in Weight	(4)	-	;	l 	; ;	Q	-0.07	†0.0-	; ;	70		+0.0t	0	0	0	0	*†2°0+	+0.25	†0°0+	L0:0+		07-0-	green scale, some
MAC AGTS				Exposure	4		None (Control)	_	None (Control)	1200°F 7 hr	25	ا ال	1200°F 50 hr	۲ ک	ζ. μ	2,5		ያ	ይ	1500°F 50 hr		S S	ደነ	S (1800°F 50 BF		* Loose green

-9-

	UNCLAS	2 ILIED			AR	7018	, CAL	.IFQ													_								
			Young's Modulus (10 ⁶ psi)	27.0 27.6	7.7	18.0	20.3	1	i	:	15.8	12.9	13.5	:	1	10.0	6.9	0.0	1 1	i									
		2.0 inches 0.033 inch 5 minutes	Elongation in 2 inches (%)	45 48	0.44	22.0	21.5	1	ł	1	29.5	30.0	27.0	1 1	!	35.0	28.0	24.0	! !	1									
	EL SHEET	<pre>Gage length = 2 Thickness = C Hold time = 5</pre>	Ultimate Tensile Strength (Ksi)	87.5 88.3	15.4	54.6	54.1 53.0		!	1	32.6	30.0	33.1	1	;	14.7	14.1	14.7	l (1									
	AINLESS STE	shop air Gage Thio	0.2% Yield Strength (Ksi)	35.7 32.8	8.2	27.3	28.2 28.2	1	1	1	20.0	16.9	17.0		1	ղ∙ Հ	7.6	ο. Σ	! !	1		ng.							
	OXIDATION EXPOSURE ON TYPE 321 STAINLESS STEEL SHEET		Proportional Limit (Ks1)	16.8 16.3	3.6	21.0	20.9	;	1	1	0.51	10.0	11.5	l !	;	8.4	5.6	5.5	: :	1		lost prior to weighing and measuring.							
	ION EXPOSURE	ğ , [Tensile Test Temperature (°F)	RT	1800	1200	002 002 1	1200	1200	1200	1500	1500	1500	128	1500	1800	1800	1800	1800	1800		ior to weighin							
	EFFECT OF OXIDAT	11 11	11 13	11 11	11 11	jj 1t	n n	11 11	II II	Change in Thickness (inch)	11	i	+0.0003	+0.0002	+0.0001	+0.0002	†000°0+	+0000-0+	+0.0003	+0.0003	40.0005	+0.0005	+0.0012*	+0.0011	0000	×100.0+	+0.0013		
	EFF	Oxidation Exposure Strain rate	Change in Weight (%)	1 1	:	0	† † † •	-0.04	†0°0-	†0°0-	+0°0+	0 (0 0	+0.0+	0	-0.34*	+0.34	+0.30	+ +	+0.41		cale, some							
MAC AGTO			Exposure	None (Control) None (Control)	None (Control)	5	1200°F 25 hr 1200°F 50 hr	R,	R	1200°F 50 hr	7	25	1500°F 50 hr	23	1500°F 50 hr		25	1800°F 50 hr		ጸያ		* Loose black scale, some scale							
	UNCLAS	CIFIFN				_	10 •																						

,	Ma.	rquardt
		CALIFORNIA

UNCL	ASSIFIED		YAN NUYS. CALIFORNIA	REPORT PR 281-4Q-								
		Young's Modulus (106 psi)	8.60 10.80 10.90 1	8.5.5								
	11 11 11	Elongation in 2 inches (%)	10 9.9 9.5 7.5 8.0 8.0 11.5 11.5 11.5	16.0 17.0 16.0								
IEET		Ultimate Tensile Strength (Ksi)	25.3 27.4 37.4 35.3 35.5 16.5 16.5	6.66								
TG ALUMINUM S aging furnace		0.2% Yield Strength (Ksi)	37.9 38.3 37.0 37.0 23.0 23.0 23.1 23.1 14.5 14.5	5.0								
BLE VII URE ON 6061-T6	Conditions: r, Lindberg ag sec to yield sec to rupture	Proportional Limit (Ksi)	26.8 27.5 28.4 10.8 10.8 10.8	4.60.00 4.00.00								
TA.	Test ().001 in./in./	Tensile Test Temperature (°F)	### X X X X X X X X X X X X X X X X X X	65 65 65 65 65 65 65 65 65 65 65 65 65 6								
EFFECT OF OX Kposure = C	11 11	11 11	11 11	11 11	11 11	11 11	11 11	11 11	11 11	Change in Thickness (inch)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.0005 -0.0002 -0.0004 -0.0002 -0.0002
	Oxidation ey Tensile stra	Change in Weight (%)		00000								
O) Te		Exposite	None (Control) None (Control) None (Control) None (Control) None (Control) 350°F 5 hr 350°F 50 hr 500°F 50 hr 500°F 50 hr	650°F 5 hr 650°F 25 hr 650°F 50 hr 650°F 50 hr 650°F 50 hr 650°F 50 hr								
	TABLE VII OF OXIDATION EXPOSURE ON 6061-T6 ALIMINUM SHEET	OF OXIDATION EXPOSURE ON 6061-T6 ALUMINUM SHEET Test Conditions: = Circulating air, Lindberg aging furnace Gage length = ss = 0.001 in./in./sec to yield O.01 in./in./sec to rupture Hold time =	EFFECT OF OXIDATION EXPOSURE ON 6061-T6 ALUMINUM SHEET Test Conditions: Oxidation exposure = Circulating air, Lindberg aging furnace Gage length = 2.0 inches Tensile strain rates = 0.001 in./in./sec to yield O.01 in./in./sec to rupture Change Change Tensile in fine Proportional in the conditions of the condition of the cond	Particle Particle								

,	110	rquardt
VAN	NUYS,	CALIFORNIA

TABLE VIII	EFFECT OF OXIDATION EXPOSURE ON ALLOAT TITANIUM SHEET

			AT.	TABLE VIII				
		EFFECT OF (OXIDATION EXPO	EFFECT OF OXIDATION EXPOSURE ON ALLOAT TITANIUM SHEET	TITANIUM S	HEET		
			Test	Test Conditions:			٠	
	Oxidation Exposure Strain rates	II II	g _,		shop air Gag Thi 'e Hol	Gage length = 2 Thickness = 0 Hold time = 5	2.0 inches 0.033 inch 5 minutes	
Exposure	Change in Weight (%)	Change in Thickness (inch)	Tensile Test Temperature (°F)	Proportional Limit (Ksi)	0.2% Yield Strength (Ksi,	Ultimate Tensile Strength (Ksi)	Elongation in 2 inches (\$)	Young's Modulus (10 ⁶ psi)
None (Control) None (Control)	11	11	RT	99.7 89.3	115.1	125.8	13.5	16.6 16.4
None (Control)	1	i	1200	18.5	38.2	55.0	25.5	4.8
ירט מ	00	+0.0001	000	0.94	5.7	75.0	17.5	9.दा
	00	+0.0005	00 00 00 00 00	1.84	7. 8X 2. 0.	75.0	17.0	전 전 전 전
R	0	+0.0001	800	1	!	1	. 1	;
800°F 70 hr 800°F 70 hr	0.1	†000°0	8 8 8	1 1	1 1	: :	: :	1 1
	+0.1	+0.0001	1000	40.1	51.5	65.5	17.5	11.4
1000°F 25 hr 1000°F 50 hr	+0.1	0000-0+	1000	35.0	. S. S.	0.49	17.5	11.3
. R &	0 9	+0.0001	1000		:	1	<u> </u>	1
R R	7.0	-0.0003	1000	! !	: :	: :	: :	! !
1200°F 5 hr	+0.1	+0.000.0+	1200	14.5	38.0	52.7	24.0	4.0
386	+0.25	+0.0002 +0.0002	1200	15.5	7.0t 40.t	57.0	20.0	9.0
1200°F 50 hr	40.53 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5	†0.000.0- 0.000.0-	000	1 1	: :		1 1	: :
R	+0.25	+0.0001	1200	1	:	i	ŀ	ł

- 12 -

- 20 -

- 21 -

- 22 -

- 25 -

- 26 -

DISTRIBUTION

Copy No.	Transmitted to
1.	Syracuse University Research Institute Department of Chemical Eng. & Metallurgy Syracuse 10, N. Y. Attn.: Dr. Volker Weiss
2.	Syracuse University Research Institute Box 145, University Station Syracuse 10, N. Y. Attn.: Dr. C. S. Grove, Jr.
3.	Defense Metals Information Center Battelle Memorial Institute 505 King Avenue Columbus 1, Ohio
4, 5.	Commander Aeronautical Systems Division Directorate of Materials & Processes Wright-Patterson AFB, Ohio Attn.: ASRCEM-1
6.	Thermophysical Properties Research Center School of Mechanical Engineering Lafayette, Indiana Attn.: Dr. Y. S. Touloukian
7.	Plastec Picatinny Arsenal Dover, New Jersey
8.	Belfour Engineering Co. Suttons Bay, Michigan Attn.: Albert J. Belfour
9•	Hughes Aircraft Company Florence and Teale Streets Culver City, California Attn.: E. M.Wallace, Library Services
10.	Commander Aeronautical Systems Division Directorate of Materials & Processes Wright-Patterson AF Base, Ohio Attn.: ASRCEE

DISTRIBUTION (Continued)

Copy No.	Transmitted to
11 to 20.	Armed Services Technical Informat ion Agency Arlington Hall Station Arlington 12, Virginia Attn.: TIPA
21.	Forest Products Laboratory Madison 5, Wisconsin Attn.: Mr. Fred Werren
22.	Commander Aeronautical Systems Division Directorate of Materials & Processes Wright-Patterson AFB, Ohio Attn.: ASRCEM-1, Library